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The force  and moment coeff ic ients  are re fer red  t o  the  s t a b i l i t y  axes 

, of the  wing mean aerodynamic chord. 
system with the o r i g i n  located on the fuselage center  l i n e  a t  the  25-percent 

longi tudinal  aerodynamic center defined a t  ( $)-, percent F 

wing span 

l o c a l  chord length 

mean aerodynamic chord of wing 

drag coef f ic ien t ,  

drag coef f ic ien t  a t  zero l i f t  

l i f t  l i f t  coef f ic ien t ,  - 

l i f t  coe f f i c i en t  a t  a = OO 

l i f t -curve  slope a t  zero l i f t ,  - aa., per deg 

rolling-moment coef f ic ien t ,  

l a t e r a l - s t a b i l i t y  parameter, -, per deg 

drag 
CIS 

qs 

a c L  

r o l l i n g  . -  ~ moment 
q= 

ac 2 
aP 
i t ch ing  moment 

BSF 
pitching-moment coef f ic ien t ,  

pitching-moment coef f ic ien t  a t  zero l i f t  

awing moment- yawing-moment coef f ic ien t ,  Y 

3% d i r e c t i o n a l - s t a b i l i t y  parameter, -,,per deg aP 

side-force coef f ic ien t ,  

sa 

s ide  force  
qs 

acY side-force parameter, -, per deg 

model body diameter 

aP 

m a x i m u m  body diameter 

wing incidence angle r e l a t i v e  t o  f'uselage center  l ine ,  pos i t ive  i n  
same sense as a, deg 
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l i f t  -drag r a t i o  L 
D 
- 

maximum l i f t - d r a g  r a t i o  

2 o v e r a l l  body length 

M free-stream Mach number 

c l  free-stream dynamic pressure 

R e  Reynolds number, per f t  

S wing planform area (reference area) 

a i r f o i l  thickness-to-chord r a t i o  t - 
C 

TP tangency point  

X longi tudina l  coordinate, measured rearward from model nose 

a angle of a t t a c k  ( re fer red  t o  fuselage center  l i n e ) ,  deg 

P angle of s ides l ip ,  deg 

The following code i s  used t o  designate the  various components of t he  
model: 

B body 

N wing -mount e d nace l l e  s 

v v e r t i c a l  t a i l  

W wing 
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WECTS OF WING ELEVATION, INCIDENCE, AND CAMBER ON THE 
AERODYNAMIC CmCTmISTICS OF A REPRESENTATIVE 

HYPERSONIC W I S E  CONFIGlTRATION AT MACH 
N"S FROM 0.65 t o  10.70 

Walter P. N e l m s ,  Jr., and John A. Axelson 

Ames Research Center 

SUMMARY 

A delta-wing and body configuration representat ive of an airbreathing , 
liquid-hydrogen fueled,  hypersonic c ru ise  a i r c r a f t  w a s  t e s t ed  with the wing i n  
high, mid, and low posi t ions a t  zero incidence on the  body, and the incidence 
angle w a s  varied from -2' t o  +2' i n  the  mid posi t ion.  
cambered, symmetrical, and negative cambered a i r f o i l  sect ions w e r e  studied f o r  
the  mid posi t ion a t  zero incidence. The t e s t s  were conducted over a nominal 
angle-of -a t tack range from -4" t o  +l2', and angle-of - s ides l ip  range from -4' 

Wings with pos i t ive  

t o  +lo0' 

The r e s u l t s  indicate  that var ia t ions  i n  wing elevat ion on the fuselage 
had l i t t l e  e f f ec t  on the  l i f t  and pitching-moment cha rac t e r i s t i c s  but  had s i g -  
n i f i can t  e f f e c t s  on the  l a t e r a l  and d i rec t iona l  s t a b i l i t y  a t  most Mach numbers 
of t he  study. Changing wing incidence varied t h e  pi tching moment a t  zero l i f t  
over the e n t i r e  t e s t  Mach number range with l i t t l e  o r  no reduction i n  the  max- 
i m u m  l i f t - d r a g  r a t i o  a t  supersonic and hypersonic speeds. A t  t ransonic  and 
supersonic Mach numbers, wing camber s ign i f i can t ly  a f fec ted  the  pi tching 
moment a t  zero l i f t  but  only s l i g h t l y  a f fec ted  t h i s  parameter a t  hypersonic 
speeds. 

INTRODUCTION 

Hypersonic c ru ise  a i r c r a f t  configurations with airbreathing propulsion 
systems employing l iqu id  hydrogen f u e l  have shown p o t e n t i a l  f o r  both t ransport  
and boost missions i n  a number of performance s tudies  typ i f i ed  by references 
1 t k o u g h  4. I n  the  course of these invest igat ions,  many problems requir ing 
fu ture  research were ident i f ied .  An;ong these w a s  the  need t o  define experi-  
mentally the  aerodynamic cha rac t e r i s t i c s  of configurations having large fuse-  
lage volumes necessi ta ted by the  storage requirements of hydrogen fue l .  For 
t h i s  reason, a research program w a s  undertaken a t  A m e s  Research Center t o  
provide experimental data  on representat ive hypersonic cmise configurations 
over a broad Mach number range. Reference 5 presents  t he  longi tudinal  aerody- 
namic cha rac t e r i s t i c s  of several configurations invest igated i n  t h i s  program. 

During the  phase of the  program discussed here, tes ts  were made a t  
hypersonic Mach numbers of a model with several geometric a l t e r a t i o n s  that 
w e r e  known a t  lower speeds t o  be e f f ec t ive  i n  varying the  configuration aero- 
dynamie e f f ic iency  and s t a b i l i t y  cha rac t e r i s t i c s .  Pa r t i cu la r  emphasis was 



given t o  the  wing geometry and the  locat ion of t he  wings on the  fuselage.  
This repor t  presents  the  e f f ec t s  of wing elevat ion,  wing incidence, and wing 
camber on the  aerodynamic cha rac t e r i s t i c s  of a representat ive hypersonic 
cruise configuration. 

The experimental inves t iga t ion  was made i n  the  Ames 6- by 6-foot 
supersonic, 1- by 3-foot supersonic, and 3.5-foot hypersonic wind tunnels over 
a Mach number range from 0.65 t o  10.70. Reynolds number was held constant a t  
3 . 5 ~ 1 0 ~  per foo t  f o r  a l l  t e s t s  except those a t  Mach numbers 2.0 and 10.7 
where the  Reynolds numbers w e r e  2.5XlO' and 2.0~10~ per  foot .  The tests were 
conducted over a nominal angle-of -a t tack range from -4' t o  +12O and angle-of - 
s i d e s l i p  range from -4' t o  +loo. 

MODEL 

Detailed drawings of t he  model i n  f igu re  1 show the  complete configu- 
r a t i o n  and the  geometric a l t e r a t i o n s  of model components considered i n  t h i s  
report .  The complete configuration i s  shown i n  f igu re  2 and per t inent  
dimensions of t he  various model components a r e  presented i n  t ab le  1. 

The model ( f i g .  l ( a ) )  was derived from the  a n a l y t i c a l  s tud ies  of 
reference 1 t o  represent  an airbreathing,  liquid-hydrogen fueled, turboramjet 
powered, hypersonic (M = 6) c ru ise  a i r c r a f t  having a gross weight of approxi- 
mately a half-mil l ion pounds and a wing area of 6250 square feet .  
of this model i s  1 inch equals 16 feet. 

The sca le  

The fuselage i s  c i r cu la r  i n  cross sec t ion  and has a f ineness  r a t i o  of 12 
with a Sears -back  p r o f i l e  extending back 11.13 inches from the  nose. A f t  of 
t h i s  s ta t ion ,  t he  body opens i n t o  a cone frustum t o  permit entrance of the  
s t i ng  support. The v e r t i c a l  ta i l ,  mounted on the  body center  l i ne ,  has a 
symmetrical diamond a i r f o i l  sec t ion  with a maximum thickness-to-chord r a t i o  
of 4 percent located a t  midchord, and leading-edge and t ra i l ing-edge sweep- 
back angles of 60' and 13O, respect ively.  The exposed area of t he  v e r t i c a l  
t a i l  i s  approximately one-fourth the  wing reference area.  The two-dimensional 
engine nacel les  mounted on the  wings ( f i g .  l ( a ) )  have ex terna l  contours t h a t  
simulate a design containing t w o  turboramjet engines per nacel le  with an e x i t  
area twice the  i n l e t  area. The nacel les  were placed i n  the  wing compression 
f i e l d  s u f f i c i e n t l y  outboard and af t  t o  avoid j e t  impingement on the  s t ruc ture  
downstream of t h e  engine ex i t s .  The nacel les  have ducts of constant i n t e r n a l  
a r ea  and do not include i n l e t  precompression ramps or provide f o r  boundary- 
layer  bypass. All t he  wings t e s t ed  have d e l t a  planforms with TO0 sweptback 
leading edges, aspect  r a t i o s  of 1.46, maximum thicknesses of 4 percent 
( t / c  = 0.04), and r idge l i n e s  (where appl icable)  a t  30 and 70 percent of the  
l o c a l  chords. I n  f igu re  l (a ) ,  t h e  wing with a f l a t  undersurface (pos i t ive  
camber) i s  shown mounted a t  zero incidence i n  a mid pos i t ion  on the  body so 
t h a t  a plane containing the wing lower surface passes through t h e  fuselage 
center  l i ne .  

2 
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The wing v e r t i c a l  locat ion on the  body, the wing incidence and the  wing 
a i r f o i l  shape were varied during t h i s  study. 
e levat ions invest igated on t h e  complete configuration (WBVN) with the  pos i t ive-  
cambered wing and 
pos i t ion  u n t i l  some p i n t  on the  wing became tangent t o  t h e  body surface,  thus 
defining the  high and low elevat ions.  
fuselage juncture regions when t h e  wing was i n  t h e  high or low pos i t ion  t o  
minimize corner flow problems. These f i l l e r  sect ions fair  i n t o  the  body 
forward and a f t  of t he  wing. 

Figure l ( b )  shows the  three wing 

i w  = 0'. The wing was moved up or down from i t s  mid 

Small f a r ings  w e r e  used i n  the  wing- 

The e f f e c t  of wing incidence was invest igated on the wing-body v e r t i c a l -  
t a i l  configuration without nacel les  and with the positive-cambered wing 
mounted i n  t h e  mid pos i t ion  as shown i n  f igure  l ( c ) .  
about a point corresponding t o  the  25 percent point of t he  mean aerodynamic 
chord through angles of incidence of -2O, -lo, 0, +lo, and 3-2'. 

The wing was ro ta ted  

Figure l ( d )  presents  d e t a i l s  of the  three  wing a i r f o i l  sect ions studied. 
Each had a maximum thickness of 4 percent ( t / c  = 0.04) but  one had pos i t ive  
camber, one had negative camber, and one had a symmetrical sect ion.  For t h i s  
comparison, the wings were mounted i n  the mid pos i t ion  on the  body a t  zero 
incidence. The wing with pos i t ive  camber and the symmetrical wing were t e s t e d  
on the wing-body v e r t i c a l - t a i l  configuration, while the  pos i t ive-  and negative- 
cambered wings were compared on the wing-body combination. 

TESTS 

Experimental data  were measured i n  the  Ames 6- by 6-foot supersonic 
1- by 3-foot supersonic, and 3.5-foot hypersonic wind tunnels  over a Mach 
number range from 0.65 t o  10.70. 
was varied from 0.65 t o  1.99, and i n  the  1- by 3-foot f a c i l i t y ,  from 1.99 t o  
4.81. Test Mach numbers were 5.31, 7.42, and 10.70 i n  the  3.5-foot hypersonic 
tunnel.  To prevent l iquefac t ion  of air  i n  the  t e s t  sec t ion  of t he  3.5-foot 
f a c i l i t y ,  t he  stagnation temperature was maintained a t  800° F f o r  Mach numbers 
of 5.31 and 7.42 and a t  1400° F f o r  Mach number 10.70. Data were taken a t  a 
constant Reynolds number of 3.5~10' per foot  a t  a l l  Mach numbers except 1.99 
and 10.70, where the  Reynolds numbers were 2.5X106 and 2.0X1O6 per foot ,  
respect ively,  because of wind-tunnel maximum pressure l imi ta t ions .  

The model was sting-mounted through the  r e a r  of t he  f'uselage, and force  

I n  the  6- by 6-foot tunnel,  t he  Mach number 

and moment measurements were made with an i n t e r n a l l y  mounted, six-component 
strain-gage balance. Test angles of  a t t a c k  ranged nominally from -hO t o  +12O, 
and angles of s i d e s l i p  ranged nominally from -4' t o  +loo a t  0' angle of attack. 
Additional t e s t s  were conducted f o r  t he  model i n  p i t c h  a t  a constant angle of 
s ides l ip .  The angles of a t t a c k  and s i d e s l i p  were corrected for both wind- 
tunnel  flow alinement and f o r  balance and s t ing  def lec t ions  caused by the  
aerodynamic loads. Fuselage base-pressure was measured, and the  drag da ta  
were adjusted t o  a condition corresponding t o  free-stream pressure on the  base. 

Since incremental var ia t ions  i n  the  aerodynamic coe f f i c i en t s  were of 
primary i n t e r e s t  i n  t h i s  report ,  the  data were not corrected f o r  i n t e r n a l  drag 
of t he  flow through t h e  nace l les  nor f o r  boundary-layer conditions on the  
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model. The e f f ec t  of these correct ions on the  configuration drag and maximum 
L/D are shown i n  reference 5. 
base drag coe f f i c i en t s  was on the  order  of 16 percent of C D ~  a t  M - 1.10 and 
decreased t o  about 3 percent of CD, a t  M = 7.4. 
the  boundary-layer flow over the  model was mixed (laminar, t r a n s i t i o n a l ,  
and/or tu rbulen t ) .  
e s s e n t i a l l y  laminar. 

The combination of nace l le  i n t e r n a l  and nace l le  

A t  Mach numbers t o  about 5 

A t  the  hypersonic Mach numbers (M 2 5) the  flow was 

Mach number 

0.65 through 4.81 20.01 
5.31 through 10.70 50.05 

Based on r e p e a t a b i l i t y  of t he  da ta  and known precis ion of the  measuring 
equipment, the  t e s t  Mach numbers and the  dimensionless aerodynamic coef f ic ien ts  
presented i n  t h i s  repor t  a r e  considered t o  be accurate  within the following 
l i m i t s  : 

~ -. .. 

Accuracy of aerodynamic 
coe f f i c i en t s ,  percent 

e 

+2 - 
23 

0 The angles of  a t t ack  and s i d e s l i p  a re  considered t o  be accurate within 20.2 . 

PFSSENTATION O F  RESULTS 

The following t a b l e  summarizes the  purpose of each f igure .  

Figure Model Configuration Purpose of f i gu re  

3 WBVN-wing i n  high, mid, Effect  of wing elevat ion 
and low posi t ions on log i tudina l  character-  

i s t i c s  

4 Same as f igure  3 

5 Same as f igu re  3 

6 Same as f igu re  3 

7 Same as f igu re  3 

Summary of r e s u l t s  from 
f igu re  3 versus M 

Effect  of  wing e levat ion 
on l a t e ra l -d i r e  c t iona l  
cha rac t e r i s t i c s  versus P 

Summary of r e s u l t s  from 
f igu re  5 versus M 

Ef fec t  of wing elevat ion 
on l a t e r a l  -d i rec t iona l  
cha rac t e r i s t i c s  versus a 
(p = 4.4O t o  4.9O) 

4 



Figure 

a 

9 

10 

11 

12 

13 

14 

Model --- configuration 

WBv-i,= +g , +lo, 0 ,  
-lo , and -2 

0 

same as f igu re  8 

WBV -pos i t ive  -'cambered 
and symmetrical wings 

Same as f igu re  10 

Same as f igu re  10 

WB - positive-and negative- 
cambered wings 

Same as f igu re  13 

Effect  of wing incidence 
on longi tudinal  charac- 
t e r i s t i c s  

Summary of r e s u l t s  from 
f igu re  8 versus M 

Effect  of wing camber on 
longi tudinal  character is-  
t i c s  

Summary of r e s u l t s  from 
f igu re  10 versus M 

Ef fec t  o f  wing camber on 
l a t e ra l -d i r ec t iona l  char- 
a c t e r i s t i c s  versus p 

Effect  of wing camber on 
longi tudinal  character  - 
i s t i c s  

Summary of r e s u l t s  from 
f igu re  13 versus M 

I n  summary, f i gu res  3 through 7 present the  e f f e c t s  of wing elevat ion 
while the e f f e c t s  of wing incidence a r e  shown i n  f igu res  8 and 9. 
of wing camber are presented i n  f igu res  10 through 14. 

The e f f e c t s  

RESULTS AND DISCUSSION 

Throughout the  study the  wing thickness was held constant a t  4 percent 
( t / c  = 0.04). The angle of a t t a c k  i n  a l l  cases was referenced t o  the  center  
l i n e  of the  fuselage,  and the  values of (L/D),= as presented i n  t h i s  report  
are f o r  untrimmed configurations.  
sented herein were evaluated a t  maximum l i f t - d r a g  r a t i o .  The general  increase 
i n  drag coef f ic ien t  above M = 7.4 i s  primarily a consequence of the  lower t es t  
Reynolds number a t  M = 10.70. 

All logi tudina3 aerodynamic centers  pre-  

Wing Elevation 

The complete configuration consis t ing of wing, body, v e r t i c a l  t a i l ,  and 
nacel les  was used f o r  t h i s  study as shown i n  f igu re  1. (For c l a r i t y ,  the  
nacel les  are not shown on f igu re  l ( b ) . )  
a i r f o i l  sect ion was mounted a t  zero incidence i n  three  d i f f e ren t  v e r t i c a l  
pos i t ions  on the  body ( f i g .  l ( b ) ) .  

The wing with a positive-cambered 
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Longitudinal cha rac t e r i s t i c s -  The v e r t i c a l  locat ion of the  wing had 
l i t t l e  or no e f f e c t  on C 
and 4). 
with increasing supersonic Mach n . e r  ( f i g .  4). 
u ra t ion  had t h e  highest  
mid-wing model t he  lowest ( f ig .  3). 
mid pos i t ion  had the  lowest 
t h e  highest .  
e s s e n t i a l l y  the  same 
high wing was s l i g h t l y  superior.  

throughout t h e  speed range of the  tes ts  ( f ig s .  3 L, 
cLa A l l  three configurations exhibi ted the  familiar decrease i n  

However, t h e  low-wing config- 
up t o  and including a Mach number of 2, and the  

The configurat ion with the  wing i n  t h e  
a t  a l l  Mach nu6bers; t he  low-wing model had 

A t  a given Mach number, a l l  three wing elevat ions resu l ted  i n  

cLO 

(L/D)max except a t  Mach numbers less than 1 where the  

The v e r t i c a l  pos i t ion  of the  wing had l i t t l e  e f f e c t  on the pi tching 
moment a t  zero l i f t  ( f i g .  4) .  The Cmo var ied from large negative values a t  
the  lower speeds t o  e s s e n t i a l l y  zero a t  the  highest  speeds. A t  a l l  th ree  wing 
pos i t ions  the  longi tudina l  aerodynamic center  t rave led  forward with increasing 
supersonic Mach number and gradually moved rearward as the speeds became 
hypersonic. 
mean aerodynamic chord and was g rea t e s t  with the  wing i n  the  l o w  posi t ion.  

This forward t r a v e l  amounted t o  approximately 19 percent of the  

Late ra 1 -dire  c t i o  ga 1 char a c t e r i  s t i ~ c s - V a r  ia t i o  n s i n  w i  ng e l e  v a t  i o  n 
s ign i f i can t ly  a f f ec t ed  t h e  d i r ec t iona l  s t a b i l i t y  a t  most Mach numbers of  t he  
study. A t  low angles of a t t ack  and a t  most Mach numbers, t he  s t a t i c  direc-  
t i o n a l  s t a b i l i t y  was l a rges t  f o r  t h e  low-wing pos i t ion  and l e a s t  f o r  t he  high- 
wing pos i t ion  ( f i g s  ., 5 and 6).  There was a s ign i f i can t  reduction i n  
with increasing supersonic Mach number ( f i g .  6) .  
changes i n  angle of a t t ack  had l i t t l e  e f f e c t  on the  yawing moment through a 
Mach number of 2, with the  low-wing model maintaining the  g rea t e s t  A t  
hypersonic speeds Cn decreased with increasing angle of a t tack .  The config- 
ura t ion  with the  high wing exhibited a less negative 
and a t  t h e  higher angles of  a t t ack ,  as shown i n  f igu re  7(f). 

CnP A s  shown i n  f igu re  7, 

(211. 

Cn a t  Mach number 7.4 

Varying t h e  wing elevat ion changed t h e  lateral s t a b i l i t y  a t  a l l  Mach 
numbers of  the  inves t iga t ion  ( f i g .  5 ) .  
the  g rea t e s t  e f f ec t ive  d ihedra l  (-C ) a t  a l l  Mach numbers and the  low-wing 
the  l ea s t .  A s  shown i n  f igu re  6,  there  was a gradual decrease i n  e f f ec t ive  
dihedral  with increasing supersonic Mach number. 
had l i t t l e  e f f e c t  on C z  through a Mach number of 2, bu t  above t h i s  speed, 
C z  increased (became more negative) with increasing angle of a t t ack  ( f ig .  7 ) .  

Throughout t h e  Mach number range of t he  t es t s ,  the low-wing configuration 
exhibited the  l a rges t  side-force parameter (cy ) ,  8s shown i n  figures 5 and 6. 
The side-force coe f f i c i en t  was r e l a t i v e l y  unaffected by changes i n  angle of 
a t t ack  a t  a l l  tes t  Mach numbers ( f i g .  7 ) .  

The high-wing configuration produced 

ZP 

Changes i n  angle of a t t ack  

B 

Wing Incidence 

For these t e s t s ,  the  model consisted of a wing, body, and v e r t i c a l  t a i l  
(nacel les  o f f )  with the wing having a positive-cambered a i r f o i l  sect ion 
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mounted i n  the  mid pos i t ion  on the  f'uselage. The wing was t e s t e d  a t  incidence 
angles of -20, -10, 0 ,  +lo and +2O as shown i n  f igu re  ~ ( c ) .  

A t  a l l  t e s t  Mach numbers, var ia t ions  i n  wing incidence s ign i f i can t ly  
a f fec ted  l i f t  a t  zero angle of a t t ack ,  with pos i t ive  incidence producing the  
higher values of  CL, ( f i g .  8).  The e f f e c t  on l i f t - cu rve  slope,  however, was 

s l i g h t  a t  a l l  Mach numbers and angles of a t t ack ,  and except a t  M = 1.59 and 
below, the  e f f e c t  on C was e s s e n t i a l l y  zero ( f i g .  9) .  DO 

Changes i n  wing incidence had a la rge  e f f e c t  on Cmo f o r  t he  t e s t  Mach 
number range with l i t t l e  or no reduction i n  
hypersonic speeds ( f ig .  9). 
shift i n  (3% a t  a l l  speeds with a small reduction i n  s ta t ic - longi tudina l  
s t a b i l i t y  above a Mach number of  2. 
decreased the  longi tudina l  s t a b i l i t y ,  and the  aerodynamic center  moved forward 
to  19 percent of the  mean aerodynamic chord. 

(L/D),, a t  supersonic and 
A wing incidence of -1 caused a favorable pos i t ive  

A wing incidence of -2' d r a s t i c a l l y  

Wing Camber 

Positive-cambered and symmetrical wings- The wing with pos i t ive  camber 
and the symmetrical wing- ( f ig .  l ( d ) )  were t e s t ed  i n  the  mid posi t ion with zero 
incidence on the  wing-body-vertical t a i l  combination (nace l les  o f f ) .  

The CL, 
numbers ( f i g .  ll), but  t he  pos i t ive  cambered wing produced a negative 
a t  the  higher speeds ( f i g .  10). A t  Mach number 2.93, there  was an increase i n  

due t o  camber, bu t  s ince the  symmetrical wing had a higher drag r i s e  with 
increasing l i f t  c o e f f i c i e n t ,  the  (L/D)max 
The drag due t o  camber was g rea t ly  reduced at the  higher speeds, and the  
(L/D)max 

of the  two wings was e s s e n t i a l l y  the  same a t  a l l  test  Mach 

cLO 

cDO 
was the  same f o r  t he  two wings. 

f o r  the  t w o  wings was e s s e n t i a l l y  equal. 

The major e f f e c t  of wing camber occurred i n  the  pitching-moment 
cha rac t e r i s t i c s .  A t  the  lower speeds, the  unfavorable negative (2% associ-  
a ted  with the  positive-cambered wing was eliminated by the  symmetrical a i r f o i l  
sect ion a t  no loss i n  (L/D)=. However, a t  the hypersonic Mach numbers, wing 
camber had l i t t l e  e f f e c t  on 
rearward 8.c. locat ion than the  symmetrical wing ( f i g .  11). 

Cmo, and the  positive-cambered wing had a more 

An examination of the  l a t e r a l  and d i r ec t iona l  cha rac t e r i s t i c s  f o r  Mach 
numbers of 1.99 and 7.42 ( f i g .  12) ind ica t e s  that camber had only s l i g h t  
e f f e c t s  on these parameters f o r  the  mid-wing pos i t ion  on the  wLng-body- 
v e r t i c a l - t a i l  combination a t  low angles of a t tack .  

PosLtive and negative cambered wings- A t  supersonic speeds was 
more g g T t i q e  with t h e  symmetrical wing than with the  positive-cambered wing 
with no loss i n  (L/D),, ( f i g .  11). Because measurements w e r e  n o t  obtained 
f o r  t he  symmetrical wing a t  the  l o w  Mach numbers, the  e f f e c t s  of camber a t  the  
l o w e r  speeds i s  based on a comparison of  the  pos i t ive  and negative camber 
( f ig .  l(d)) studied throughout t he  e n t i r e  test  range of Mach numbers ( f igs .  13 
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and 14) f o r  t he  mid-wing pos i t ion  on the  wing-body combination. 
( f i g .  14) ind ica te  no difference i n  

number of 1, but  a t  t he  subsonic Mach numbers C L ~  was s l i g h t l y  lower f o r  
t he  positive-cambered wing. A t  t he  lower speeds, CL was higher f o r  t he  
wing with positi.ve camber but  above the  Mach number a2 which the wing leading 
edge experienced supersonic flow (M = 2.92), was l a rge r  f o r  the  wing 

the  t e s t  range of Mach numbers. 

The r e s u l t s  
between the  two wings above a Mach 

cLa 

C I , ~  
with negative camber. Both wings produced equal l eve l s  of CDo throughout 

For the  wings with pos i t ive  and negative camber, t e s t ed  i n  the  presence 
of the body only, Cmo 
( f i g .  14), as expected. The pos i t ive  values of Cmo f o r  the wing with nega- 
t i v e  camber below a Mach number of  6 a r e  favorable t o  achieving longi tudinal  
t r i m ,  but were accompanied by s ign i f i can t ly  reduced l eve l s  o f  
( f ig .  14 ) .  A t  hypersonic speeds, the wing with negative camber had s l i g h t l y  
lower values of  
negative values of 

t he  pos i t ive  -cambered wing. 

w a s  of equal magnitude but  opposite a lgebra ic  s ign 

(L/D)max 

(L/D)max, higher drag a t  pos i t i ve  l i f t  coef f ic ien ts ,  s l i g h t l y  
Cmo, and a more forward a.c.  locat ion i n  comparison t o  

CONCLUSIONS 

An experimental inves t iga t ion  of the  e f f e c t s  of  wing elevation, wing 
incidence, and wing camber on the  aerodynamic cha rac t e r i s t i c s  of a represen- 
t a t i v e  hypersonic c ru ise  configuration has been conducted a t  Mach numbers 
from 0.65 t o  10.70. The wings were t e s t e d  i n  high, mid, and low pos i t ions  a t  
zero incidence on the  body, and the  incidence angle was varied from -2' t o  +2O 
f o r  the mid posi t ion.  Wings with pos i t ive  cambered, symmetrical, and negative 
cambered a i r f o i l  sect ions were studied i n  the  mid pos i t ion  a t  zero incidence. 
The r e s u l t s  warrant t he  following comments : 

1. Wing elevat ion on the  body had l i t t l e  e f f e c t  on the  l i f t  and pi tching-  
moment cha rac t e r i s t i c s  throughout t he  t e s t  Mach number range. 

2. The low-wing configuration had the  g rea t e s t  d i r ec t iona l  s t a b i l i t y  a t  
most t e s t  Mach numbers a t  the  lower angles of a t tack .  

3. The high-wing configuration exhibi ted the  g rea t e s t  e f f ec t ive  dihedral  
throughout the  Mach number range of t he  invest igat ion.  

4. Changes i n  angle of a t t ack  had l i t t l e  e f f e c t  on 5he l a t e r a l  and 
d i r ec t iona l  cha rac t e r i s t i c s  a t  Mach numbers of 2 and below f o r  t he  three  wing 
elevat ions,  but  above M = 2 increasing angle of a t t ack  reduced the  d i r ec t iona l  
s t a b i l i t y  and increased the  e f f ec t ive  dihedral.  

5. Variations i n  wing incidence changed t h e  pi tching moment a t  zero l i f t  
f o r  the  e n t i r e  t e s t  Mach number range, with l i t t l e  o r  no reduction i n  the  max- 
imum l i f t - d r a g  r a t i o  a t  supersonic and hypersonic speeds. 
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6. Varying the  wing camber s ign i f i can t ly  a f fec ted  the pi tching moment a t  
zero l i f t  a t  t ransonic  and supersonic speeds, but had a very small effect  on 
t h i s  parameter a t  hypersonic Mach numbers. 

7. The aerodynamic center  was f a r t h e r  rearward on the  positive-cambered 
wing than on the  symmetrical or negative-cambered wings a t  hypersonic speeds 
and at  maximum l i f t - d r a g  r a t i o .  

A m e s  Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  94035, June 23, 1970 
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TABLE 1 . MODEL GEOMETRY 

[Dimensions are i n  inches; areas are i n  square inches] 

Fuselage 

Length. 2 . . . . . . . . . . . . . . .  17.81 
M a x i m u m  diameter. dmm . . . . . . . .  1.48 

W i n g  

Span. b . . . . . . . . . . . . . . . .  
Aspect r a t i o  . . . . . . . . . . . . . .  
Center-l ine chord . . . . . . . . . . .  . 
Mean aerodynamic chord. . . . . . . . .  
Planform ..... S . . . . . . . . . . . .  
Maximum t / c  . . . . . . . . . . . . . .  
Leading-edge sweep . . . . . . . . . . .  
Trailing-edge sweep . . . . . . . . . .  

5.96 

8.19 
1.46 

5.46 
24.41 
0.04 
70° 

00 

Vert ica l  T a i l  

Exposed span . . . . . . . . . . . . . .  2.48 
Exposed root chord . . . . . . . . . . .  4.33 
Tip chord . . . . . . . . . . . . . . .  0.60 
Ekposed area . . . . . . . . . . . . . .  6.40 
M a x i m  t / c  . . . . . . . . . . . . . .  0.04 
Leading-edge sweep . . . . . . . . . . .  60' 
Trailing-edge sweep . . . . . . . . . .  13' 

Nace 1 le  s 

Length . . . . . . . . . . . . . . . . .  2.19 
I n l e t  area. t o t a l  . . . . . . . . . . .  0.28 
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10.96 I 13.81 116.00 118..41 

0.6038 
0.7156 
0.8059 

(0.25 E )  

TP 

0.6000 0.9703 
0.6250 0.9535 
1.00oo 0.6739 

BODY COORDINATES 

L-. - 
0.0 0.0 0.3000 0.8774 
0.0025 0.0316 0.3500 0.9326 I 

p- 

0.0050 

0.0500 

0.1500 

0.2500 

0.0100 

0.1000 

0.2000 

- 
dmax = 1.48 
2 = 17.81 

(a} Complete configuration (WBVN); mid-wing elevation; positive cambered wing; i, = 0.. 
I-' 
I-' Figure 1.- Model drawing; all dimensions are in inches. 



High 

I LIOW elevation 

Note: For clarity on this drawing 
the nacelles are not shown 

(b) Sketch showing wing elevations; WBVN configuration; positive cambered wing; i, = 0". 

Figure 1. - Continued. 



Note: For c l a r i t y  on t h i s  
drawing the wing in-  
cidence angle has 
been exaggerated 

iw = +Po, +lo, O o ,  -lo, -2' 

(0.25 E )  

// I 10.96 

( e )  Sketch showing wing incidence; WBV configuration; mid-wing e le -  
vation; positive cambered wing. 

Figure 1. - Continued. 
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Fuselage 
8,190 .-I 

$- - -.- 
- t -- ---- 

A 

Typical A-A sections 
(Not to scale) 

Positive camber Symmetrical 
I 

Negative camber 

(a) Details of cambered and symmetrical wings; WB and WBV configurations; 
mid-wing elevation; iw = 0.. 

Figure 1.- Concluded. 



Three-quarter top view 

Three-quarter bottom view A-3 9 6 2 6 -5 

A-3 9 62 6 -6 

Figure 2.- Photographs of model; WBVN configuration; mid-wing elevation; 
positive cambered wing; i, = 0.. 
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